Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 299
1.
J Agric Food Chem ; 72(19): 10862-10878, 2024 May 15.
Article En | MEDLINE | ID: mdl-38712687

Bama County is a world-famous longevity county in the Guangxi Province, China. Bama hemp is a traditional seed used in hemp cultivation in the Bama County. The seeds contain abundant unsaturated fatty acids, particularly linoleic acid (LA) and linolenic acid in the golden ratio. These two substances have been proven to be related to human health and the prevention of various diseases. However, the seed development and seed oil accumulation mechanisms remain unclear. This study employed a combined analysis of physiological, transcriptomic, and metabolomic parameters to elucidate the fatty acid formation patterns in Bama hemp seeds throughout development. We found that seed oil accumulated at a late stage in embryo development, with seed oil accumulation following an "S″-shaped growth curve, and positively correlated with seed size, sugar content, protein content, and starch content. Transcriptome analysis identified genes related to the metabolism of LA, α-linolenic acid (ALA), and jasmonic acid (JA). We found that the FAD2 gene was upregulated 165.26 folds and the FAD3 gene was downregulated 6.15 folds at day 21. Metabolomic changes in LA, ALA, and JA compounds suggested a competitive relationship among these substances. Our findings indicate that the peak period of substance accumulation and nutrient accumulation in Bama hemp seeds occurs during the midstage of seed development (day 21) rather than in the late stage (day 40). The results of this research will provide a theoretical basis for local cultivation and deep processing of Bama hemp.


Cannabis , Gene Expression Regulation, Plant , Linoleic Acid , Metabolomics , Plant Proteins , Seeds , Transcriptome , alpha-Linolenic Acid , Seeds/metabolism , Seeds/growth & development , Seeds/genetics , Seeds/chemistry , alpha-Linolenic Acid/metabolism , Cannabis/genetics , Cannabis/growth & development , Cannabis/metabolism , Cannabis/chemistry , Linoleic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , China , Gene Expression Profiling
2.
Methods Mol Biol ; 2787: 245-253, 2024.
Article En | MEDLINE | ID: mdl-38656494

To properly assess promoter activity, which is critical for understanding biosynthetic pathways in different plant species, we use agroinfiltration-based transient gene expression assay. We compare the activity of several known promoters in Nicotiana benthamiana with their activity in Cannabis sativa (both hemp and medicinal cannabis), which has attracted much attention in recent years for its industrial, medicinal, and recreational properties. Here we describe an optimized protocol for transient expression in Cannabis combined with a ratiometric GUS reporter system that allows more accurate evaluation of promoter activity and reduces the effects of variable infiltration efficiency.


Cannabis , Gene Expression Regulation, Plant , Nicotiana , Plants, Genetically Modified , Promoter Regions, Genetic , Cannabis/genetics , Cannabis/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Plants, Genetically Modified/genetics , Genes, Reporter , Gene Expression/genetics , Glucuronidase/genetics , Glucuronidase/metabolism
3.
Sci Rep ; 14(1): 9162, 2024 04 22.
Article En | MEDLINE | ID: mdl-38644388

Cannabis sativa L., previously concealed by prohibition, is now a versatile and promising plant, thanks to recent legalization, opening doors for medical research and industry growth. However, years of prohibition have left the Cannabis research community lagging behind in understanding Cannabis genetics and trait inheritance compared to other major crops. To address this gap, we conducted a comprehensive genome-wide association study (GWAS) of nine key agronomic and morphological traits, using a panel of 176 drug-type Cannabis accessions from the Canadian legal market. Utilizing high-density genotyping-by-sequencing (HD-GBS), we successfully generated dense genotyping data in Cannabis, resulting in a catalog of 800 K genetic variants, of which 282 K common variants were retained for GWAS analysis. Through GWAS analysis, we identified 18 markers significantly associated with agronomic and morphological traits. Several identified markers exert a substantial phenotypic impact, guided us to putative candidate genes that reside in high linkage-disequilibrium (LD) with the markers. These findings lay a solid foundation for an innovative cannabis research, leveraging genetic markers to inform breeding programs aimed at meeting diverse needs in the industry.


Cannabis , Genome-Wide Association Study , Phenotype , Polymorphism, Single Nucleotide , Cannabis/genetics , Linkage Disequilibrium , Genome, Plant , Quantitative Trait Loci , Genetic Markers , Genotype
4.
J Photochem Photobiol B ; 254: 112902, 2024 May.
Article En | MEDLINE | ID: mdl-38569457

The effect of low artificial Ultraviolet (UV) on the DNA methylation remains controversial. This study addresses how differential photoperiods of UV radiation affect the biochemical and molecular behaviors of Cannabis indica cell suspension cultures. The cell suspensions were illuminated with the compact fluorescent lamps (CFL), emitting a combination of 10% UVB, 30% UVA, and the rest visible wavelengths for 0, 4, 8, and 16 h. The applied photoperiods influenced cell morphological characteristics. The 4 h photoperiod was the most effective treatment for improving biomass, growth index and cell viability percentage while these indices remained non-significant in the 16 h treatment. The methylation-sensitive amplified polymorphism (MASP) assay revealed that the UV radiation was epigenetically accompanied by DNA hypermethylation. The light-treated cells significantly displayed higher relative expression of the cannabidiolic| acid synthase (CBDAS) and delta9-tetrahydrocannabinolic acid synthase (THCAS) genes about 4-fold. The expression of the olivetolic acid cyclase (OAC) and olivetol synthase (OLS) genes exhibited an upward trend in response to the UV radiation. The light treatments also enhanced the proline content and protein concentration. The 4 h illumination was significantly capable of improving the cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) concentrations, in contrast with 16 h. By increasing the illumination exposure time, the activity of the phenylalanine ammonia-lyase (PAL) enzyme linearly upregulated. The highest amounts of the phenylpropanoid derivatives were observed in the cells cultured under the radiation for 4 h. Taken collective, artificial UV radiation can induce DNA methylation modifications and impact biochemical and molecular differentiation in the cell suspensions in a photoperiod-dependent manner.


Cannabinoids , Cannabis , Cannabis/genetics , Cannabis/chemistry , Cannabinoids/pharmacology , Dronabinol/pharmacology , DNA Methylation , Ultraviolet Rays , Cell Proliferation
5.
Plant Mol Biol ; 114(3): 47, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632206

Natural Antisense Transcripts (NATs) are a kind of complex regulatory RNAs that play crucial roles in gene expression and regulation. However, the NATs in Cannabis Sativa L., a widely economic and medicinal plant rich in cannabinoids remain unknown. In this study, we comprehensively predicted C. sativa NATs genome-wide using strand-specific RNA sequencing (ssRNA-Seq) data, and validated the expression profiles by strand-specific quantitative reverse transcription PCR (ssRT-qPCR). Consequently, a total of 307 NATs were predicted in C. sativa, including 104 cis- and 203 trans- NATs. Functional enrichment analysis demonstrated the potential involvement of the C. sativa NATs in DNA polymerase activity, RNA-DNA hybrid ribonuclease activity, and nucleic acid binding. Finally, 18 cis- and 376 trans- NAT-ST pairs were predicted to produce 621 cis- and 5,679 trans- small interfering RNA (nat-siRNAs), respectively. These nat-siRNAs were potentially involved in the biosynthesis of cannabinoids and cellulose. All these results will shed light on the regulation of NATs and nat-siRNAs in C. sativa.


Cannabinoids , Cannabis , RNA, Antisense/analysis , RNA, Antisense/genetics , RNA, Antisense/metabolism , Cannabis/genetics , RNA, Small Interfering/analysis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Genome, Plant
6.
PeerJ ; 12: e17249, 2024.
Article En | MEDLINE | ID: mdl-38685943

Ascorbate peroxidase (APX) plays a critical role in molecular mechanisms such as plant development and defense against abiotic stresses. As an important economic crop, hemp (Cannabis sativa L.) is vulnerable to adverse environmental conditions, such as drought, cold, salt, and oxidative stress, which lead to a decline in yield and quality. Although APX genes have been characterized in a variety of plants, members of the APX gene family in hemp have not been completely identified. In this study, we (1) identified eight members of the CsAPX gene family in hemp and mapped their locations on the chromosomes using bioinformatics analysis; (2) examined the physicochemical characteristics of the proteins encoded by these CsAPX gene family members; (3) investigated their intraspecific collinearity, gene structure, conserved domains, conserved motifs, and cis-acting elements; (4) constructed a phylogenetic tree and analyzed interspecific collinearity; and (5) ascertained expression differences in leaf tissue subjected to cold, drought, salt, and oxidative stresses using quantitative real-time-PCR (qRT-PCR). Under all four stresses, CsAPX6, CsAPX7, and CsAPX8 consistently exhibited significant upregulation, whereas CsAPX2 displayed notably higher expression levels under drought stress than under the other stresses. Taken together, the results of this study provide basic genomic information on the expression of the APX gene family and pave the way for studying the role of APX genes in abiotic stress.


Ascorbate Peroxidases , Cannabis , Gene Expression Regulation, Plant , Phylogeny , Stress, Physiological , Cannabis/genetics , Cannabis/enzymology , Cannabis/metabolism , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Stress, Physiological/genetics , Multigene Family/genetics , Droughts , Plant Proteins/genetics , Plant Proteins/metabolism , Oxidative Stress/genetics , Chromosome Mapping , Genome, Plant/genetics , Chromosomes, Plant/genetics
7.
Environ Microbiol Rep ; 16(2): e13259, 2024 Apr.
Article En | MEDLINE | ID: mdl-38649235

The seed-endophytic bacterial community is a potentially beneficial and heritable fraction of the plant microbiome. Its utilization as a sustainable crop improvement strategy could be especially valuable for species such as hemp, where production is being scaled up and new challenges will be faced in managing crop productivity and health. However, little is known about the makeup and variation of the hemp seed microbiome. This study profiled the endophytic bacterial communities harboured by 16 hemp cultivars sourced from commercial suppliers in Europe. A 16S rDNA amplicon sequencing approach identified 917 amplicon sequence variants across samples. Taxonomic classification of sequences revealed 4 phyla and 87 genera to be represented in the dataset. Several genera were widespread while some were specific to one or a few cultivars. Flavobacterium, Pseudomonas, and Pantoea were notable in their high overall abundance and prevalence, but community composition was variable and no one taxon was universally abundant, suggesting a high degree of flexibility in community assembly. Taxonomic composition and alpha diversity differed among cultivars, though further work is required to understand the relative influence of hemp genetic factors on community structure. The taxonomic profiles presented here can be used to inform further work investigating the functional characteristics and potential plant-growth-promoting traits of seed-borne bacteria in hemp.


Bacteria , Cannabis , Endophytes , RNA, Ribosomal, 16S , Seeds , Cannabis/microbiology , Cannabis/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Seeds/microbiology , Endophytes/genetics , Endophytes/classification , Endophytes/isolation & purification , RNA, Ribosomal, 16S/genetics , Microbiota , Phylogeny , Biodiversity , Europe , DNA, Bacterial/genetics
8.
BMC Plant Biol ; 24(1): 151, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38418942

BACKGROUND: Cannabis is a historically, culturally, and economically significant crop in human societies, owing to its versatile applications in both industry and medicine. Over many years, native cannabis populations have acclimated to the various environments found throughout Iran, resulting in rich genetic and phenotypic diversity. Examining phenotypic diversity within and between indigenous populations is crucial for effective plant breeding programs. This study aimed to classify indigenous cannabis populations in Iran to meet the needs of breeders and breeding programs in developing new cultivars. RESULTS: Here, we assessed phenotypic diversity in 25 indigenous populations based on 12 phenological and 14 morphological traits in male and female plants. The extent of heritability for each parameter was estimated in both genders, and relationships between quantitative and time-based traits were explored. Principal component analysis (PCA) identified traits influencing population distinctions. Overall, populations were broadly classified into early, medium, and late flowering groups. The highest extent of heritability of phenological traits was found in Start Flower Formation Time in Individuals (SFFI) for females (0.91) Flowering Time 50% in Individuals (50% of bracts formed) (FT50I) for males (0.98). Populations IR7385 and IR2845 exhibited the highest commercial index (60%). Among male plants, the highest extent of Relative Growth Rate (RGR) was observed in the IR2845 population (0.122 g.g- 1.day- 1). Finally, populations were clustered into seven groups according to the morphological traits in female and male plants. CONCLUSIONS: Overall, significant phenotypic diversity was observed among indigenous populations, emphasizing the potential for various applications. Early-flowering populations, with their high RGR and Harvest Index (HI), were found as promising options for inclusion in breeding programs. The findings provide valuable insights into harnessing the genetic diversity of indigenous cannabis for diverse purposes.


Cannabis , Humans , Female , Male , Cannabis/genetics , Iran , Plant Breeding , Phenotype , Reproduction
9.
Plant J ; 118(4): 1155-1173, 2024 May.
Article En | MEDLINE | ID: mdl-38332528

Cannabis glandular trichomes (GTs) are economically and biotechnologically important structures that have a remarkable morphology and capacity to produce, store, and secrete diverse classes of secondary metabolites. However, our understanding of the developmental changes and the underlying molecular processes involved in cannabis GT development is limited. In this study, we developed Cannabis Glandular Trichome Detection Model (CGTDM), a deep learning-based model capable of differentiating and quantifying three types of cannabis GTs with a high degree of efficiency and accuracy. By profiling at eight different time points, we captured dynamic changes in gene expression, phenotypes, and metabolic processes associated with GT development. By integrating weighted gene co-expression network analysis with CGTDM measurements, we established correlations between phenotypic variations in GT traits and the global transcriptome profiles across the developmental gradient. Notably, we identified a module containing methyl jasmonate (MeJA)-responsive genes that significantly correlated with stalked GT density and cannabinoid content during development, suggesting the existence of a MeJA-mediated GT formation pathway. Our findings were further supported by the successful promotion of GT development in cannabis through exogenous MeJA treatment. Importantly, we have identified CsMYC4 as a key transcription factor that positively regulates GT formation via MeJA signaling in cannabis. These findings provide novel tools for GT detection and counting, as well as valuable information for understanding the molecular regulatory mechanism of GT formation, which has the potential to facilitate the molecular breeding, targeted engineering, informed harvest timing, and manipulation of cannabinoid production.


Acetates , Cannabis , Cyclopentanes , Deep Learning , Gene Expression Profiling , Gene Expression Regulation, Plant , Oxylipins , Trichomes , Oxylipins/pharmacology , Oxylipins/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Cannabis/genetics , Cannabis/growth & development , Cannabis/metabolism , Acetates/pharmacology , Trichomes/genetics , Trichomes/metabolism , Trichomes/growth & development , Gene Expression Profiling/methods , Transcriptome , Plant Growth Regulators/metabolism
10.
AIDS Res Hum Retroviruses ; 40(1): 1-6, 2024 Jan.
Article En | MEDLINE | ID: mdl-37022787

Compared to young heterosexual men, young sexual and gender minorities (YSGM) have elevated systemic inflammation and unique intestinal microbial profiles, influenced by HIV infection and substance use. However, links between cannabis use and microbial dysbiosis in this population have not been well described. In this pilot study, we aimed to characterize the complex interrelationships between cannabis use and microbial community structure in YSGM in relationship to HIV status. Cannabis use was assessed by self-administered Cannabis Use Disorder Identification Test (CUDIT) questionnaires and rectal microbial community alpha-diversity metrics were assessed via 16S ribosomal ribonucleic acid (rRNA) sequencing in a subset of YSGM (n = 42) in the RADAR cohort (aged 16-29) in Chicago. Multivariable regression models were used to assess the relationship between cannabis use and microbiome alpha-diversity metrics, adjusting for HIV status and other risk characteristics, including inflammation, which was evaluated by plasma levels of C-reactive protein (CRP). Problematic cannabis use, but not general use, was significantly inversely associated with microbial community richness (Adj. Beta = -8.13; 95% confidence interval [CI]: -15.68 to -0.59) and Shannon diversity (Adj. Beta = -0.04; 95% CI: -0.07 to 0.009). No significant association was observed between CUDIT score and community evenness, nor was any significant moderation observed by HIV status. We observed that problematic cannabis use was associated with reduced microbial community richness and Shannon diversity, adjusting for within population differences in inflammation and HIV status. Future research should aim to assess how cannabis use contributes to microbiome-related health factors among YSGM and if decreasing cannabis use can restore gut microbial community structure.


Cannabis , HIV Infections , Sexual and Gender Minorities , Substance-Related Disorders , Humans , Male , HIV Infections/epidemiology , Cannabis/genetics , Pilot Projects , Inflammation , RNA, Ribosomal, 16S/genetics
11.
Mol Plant Microbe Interact ; 37(1): 51-61, 2024 Jan.
Article En | MEDLINE | ID: mdl-37750850

Powdery mildew (PM) in Cannabis sativa is most frequently caused by the biotrophic fungus Golovinomyces ambrosiae. Based on previously characterized variation in susceptibility to PM, biparental populations were developed by crossing the most resistant cultivar evaluated, 'FL 58', with a susceptible cultivar, 'TJ's CBD'. F1 progeny were evaluated and displayed a range of susceptibility, and two were self-pollinated to generate two F2 populations. In 2021, the F2 populations (n = 706) were inoculated with PM and surveyed for disease severity. In both F2 populations, 25% of the progeny were resistant, while the remaining 75% showed a range of susceptibility. The F2 populations, as well as selected F1 progeny and the parents, were genotyped with a single-nucleotide polymorphism array, and a consensus genetic map was produced. A major effect quantitative trait locus on C. sativa chromosome 1 (Chr01) and other smaller-effect quantitative trait loci (QTL) on four other chromosomes were identified. The most associated marker on Chr01 was located near CsMLO1, a candidate susceptibility gene. Genomic DNA and cDNA sequencing of CsMLO1 revealed a 6.8-kb insertion in FL 58, relative to TJ's CBD, of which 846 bp are typically spliced into the mRNA transcript encoding a premature stop codon. Molecular marker assays were developed using CsMLO1 sequences to distinguish PM-resistant and PM-susceptible genotypes. These data support the hypothesis that a mutated MLO susceptibility gene confers resistance to PM in C. sativa and provides new genetic resources to develop resistant cultivars. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Cannabis , Cannabis/genetics , Disease Resistance/genetics , Chromosome Mapping , Quantitative Trait Loci/genetics , Genotype , Plant Diseases/genetics , Plant Diseases/microbiology
12.
Environ Entomol ; 53(1): 34-39, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-37535869

Of the many arthropod species affecting hemp (Cannabis sativa L.) cultivation in the United States, one species of particular importance is the hemp russet mite (Aculops cannabicola, HRM). Hemp russet mite is a microscopic arthropod which feeds on all parts of hemp plants. Due to its minute size, HRM can proliferate undetected for a long time, complicating management efforts and causing serious economic losses. DNA sequencing and PCR assays can facilitate accurate identification and early detection of HRM in infested-plants. Therefore, a real-time SYBR Green based species-specific PCR assay (quantitative PCR, qPCR) was developed for the identification of HRM DNA by amplification of a 104 bp Internal Transcribed Spacer 1 (ITS1) sequence. The detection limit was estimated to be approximately 48 copies of the HRM marker gene sequence. The real-time-PCR assay is rapid, detects all life stages of mite under 2 hours. A 10-fold serial dilution of the plasmid DNA containing the ITS1 insert were used as standards in the real-time PCR assay. The quantification cycle (Cq) value of the assay showed a strong linear relationship with HRM DNA with R2 of 0.96. The assay was tested against several commonly found hemp pests including two-spotted spider mite and western flower thrips to determine specificity of the assay and to show that no non-target species DNA was amplified. The outcomes of this research will have important applications for agricultural biosecurity through accurate identification of HRM, early detection and timely deployment of management tactics to manage and prevent pest outbreaks.


Cannabis , Animals , Real-Time Polymerase Chain Reaction , Cannabis/genetics , Sequence Analysis, DNA , Species Specificity , DNA
14.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article En | MEDLINE | ID: mdl-38068947

The increasing demand for novel natural compounds has prompted the exploration of innovative approaches in bioengineering. This study investigates the bioengineering potential of the marine diatom Phaeodactylum tricornutum through the introduction of cannabis genes, specifically, tetraketide synthase (TKS), and olivetolic acid cyclase (OAC), for the production of the cannabinoid precursor, olivetolic acid (OA). P. tricornutum is a promising biotechnological platform due to its fast growth rate, amenability to genetic manipulation, and ability to produce valuable compounds. Through genetic engineering techniques, we successfully integrated the cannabis genes TKS and OAC into the diatom. P. tricornutum transconjugants expressing these genes showed the production of the recombinant TKS and OAC enzymes, detected via Western blot analysis, and the production of cannabinoids precursor (OA) detected using the HPLC/UV spectrum when compared to the wild-type strain. Quantitative analysis revealed significant olivetolic acid accumulation (0.6-2.6 mg/L), demonstrating the successful integration and functionality of the heterologous genes. Furthermore, the introduction of TKS and OAC genes led to the synthesis of novel molecules, potentially expanding the repertoire of bioactive compounds accessible through diatom-based biotechnology. This study demonstrates the successful bioengineering of P. tricornutum with cannabis genes, enabling the production of OA as a precursor for cannabinoid production and the synthesis of novel molecules with potential pharmaceutical applications.


Cannabinoids , Cannabis , Diatoms , Hallucinogens , Cannabis/genetics , Cannabinoids/genetics , Diatoms/genetics , Cannabinoid Receptor Agonists , Bioengineering
15.
BMC Cardiovasc Disord ; 23(1): 611, 2023 12 13.
Article En | MEDLINE | ID: mdl-38093188

BACKGROUND: Association between cannabis use and development of atherosclerotic cardiovascular disease (ASCVD) is inconsistent and challenging to interpret, given existing study limitations. METHODS: Sixty five independent single-nucleotide polymorphisms (SNPs), obtained from a genome-wide association study on lifetime cannabis use, were employed as genetic instruments to estimate the effects of genetically indexed cannabis use on risk of coronary artery disease (CAD) and acute ischemic stroke (IS) using a two-sample Mendelian randomization (MR) approach. Summary statistics on CAD (CARDIoGRAMplusC4D; 60,801 cases and 123,504 controls) and IS (MEGASTROKE; 34,217 cases and 406,111 controls) were obtained separately. A comprehensive review of the observational literature on cannabis use and CAD or IS was also performed and contrasted with MR results. RESULTS: There was no causal effect of cannabis use on the risk of CAD (odds ratio (OR) per ever-users vs. never-users 0.93; 95% confidence interval (CI), 0.83 to 1.03) or IS (OR 1.05; 95%CI, 0.93 to 1.19). Sensitivity analyses yielded similar results, and no heterogeneity and directional pleiotropy was observed. Our meta-analysis of observational studies showed no significant association between ever use of cannabis with risk of CAD (k = 6 studies; ORpooled = 1.23, 95%CI 0.78 to 1.69), nor with IS (k = 6 studies; ORpooled = 1.22, 95%CI 0.95 to 1.50). CONCLUSION: Using a genetic approach approximating a clinical trial does not provide evidence consistent with a causal effect of genetic predisposition to cannabis use on CAD or IS development. Further studies are needed to replicate our findinds, an to investigate more precisely the risk of ASCVD in relation to the quantity, type, route of administration, or the age at exposure to cannabis.


Atherosclerosis , Cannabis , Cardiovascular Diseases , Coronary Artery Disease , Ischemic Stroke , Humans , Cannabis/genetics , Genome-Wide Association Study/methods , Risk Factors , Mendelian Randomization Analysis/methods , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Atherosclerosis/diagnosis , Atherosclerosis/epidemiology , Atherosclerosis/genetics , Polymorphism, Single Nucleotide , Observational Studies as Topic
16.
BMC Plant Biol ; 23(1): 616, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-38049730

BACKGROUND: Cannabis sativa, a dioecious plant that has been cultivated worldwide for thousands of years, is known for its secondary metabolites, especially cannabinoids, which possess several medicinal effects. In this study, we investigated the autopolyploidization effects on the biosynthesis and accumulation of these metabolites, transcriptomic and metabolomic analyses were performed to explore the gene expression and metabolic variations in industrial hemp autotetraploids and their diploid progenitors. RESULTS: Through these analyses, we obtained 1,663 differentially expressed metabolites and 1,103 differentially expressed genes. Integrative analysis revealed that phenylpropanoid and terpenoid biosynthesis were regulated by polyploidization. No substantial differences were found in the cannabidiol or tetrahydrocannabinol content between tetraploids and diploids. Following polyploidization, some transcription factors, including nine bHLH and eight MYB transcription factors, affected the metabolic biosynthesis as regulators. Additionally, several pivotal catalytic genes, such as flavonol synthase/flavanone 3-hydroxylase, related to the phenylpropanoid metabolic pathway, were identified as being modulated by polyploidization. CONCLUSIONS: This study enhances the overall understanding of the impact of autopolyploidization in C. sativa and the findings may encourage the application of polyploid breeding for increasing the content of important secondary metabolites in industrial hemp.


Cannabis , Transcriptome , Cannabis/genetics , Diploidy , Terpenes , Plant Breeding , Transcription Factors/genetics
17.
Infect Genet Evol ; 116: 105523, 2023 Dec.
Article En | MEDLINE | ID: mdl-37940011

Mitoviruses were initially known for their presence in the mitochondria of fungi and were considered exclusive to these organisms. However, recent studies have shown that they are also present in a large number of plant species. Despite the potential impact that mitoviruses might have on the mitochondria of plant cells, there is a lack of information about these ancient RNA viruses, especially within the Cannabaceae family. Cannabis sativa has been in the spotlight in recent years due to the growing industrial applications of plant derivatives, such as fiber and secondary metabolites. Given the importance of Cannabis in today's agriculture, our study aimed to expand the knowledge frontier of Mitoviruses in C. sativa by increasing the number of reference genomes of CasaMV1 available in public databases and representing a larger number of crops in countries where its industrial-scale growth is legalized. To achieve this goal, we used transcriptomics to sequence the first mitoviral genomes of Colombian crops and analyzed RNA-seq datasets available in the SRA databank. Additionally, the evolutionary analysis performed using the mitovirus genomes revealed two main lineages of CasaMV1, termed CasaMV1_L1 and CasaMV1_L2. These mitoviral lineages showed strong clustering based on the geographic location of the crops and differential expression intensities.


Cannabis , RNA Viruses , Cannabis/genetics , Phylogeny , RNA Viruses/genetics , Mitochondria/genetics , Fungi
18.
Sci Rep ; 13(1): 19605, 2023 11 10.
Article En | MEDLINE | ID: mdl-37949880

Several observational studies have investigated the association between cannabis use and intraocular pressure, but its association with primary open-angle glaucoma (POAG) remains unclear. In this study, we leveraged human genetic data to assess through Mendelian randomization (MR) whether cannabis use affects POAG. We used five single-nucleotide polymorphisms (SNPs) associated with lifetime cannabis use (P-value < 5 × 10-8) from a genome-wide association study (GWAS) (N = 184,765) by the International Cannabis Consortium, 23andMe, and UK Biobank and eleven SNPs associated with cannabis use disorder (P-value < 5 × 10-7) from a GWAS meta-analysis of (17,068 cases and 357,219 controls of European descent) from Psychiatric Genomics Consortium Substance Use Disorders working group, Lundbeck Foundation Initiative for Integrative Psychiatric Research, and deCode. We associated the selected five SNPs from the GWAS of lifetime cannabis use and the eleven SNPs from the GWAS of cannabis use disorder, with the largest to date GWAS meta-analysis of POAG (16,677 cases and 199,580 controls). MR analysis suggested no evidence for a causal association of lifetime cannabis use and cannabis use disorder with POAG (odds ratio (OR) of outcome per doubling of the odds of exposure (95% confidence interval): 1.04 (0.88; 1.23) for lifetime cannabis use and 0.97 (0.92; 1.03) for cannabis use disorder). Sensitivity analyses to address pleiotropy and weak instrument bias yielded similar estimates to the primary analysis. In conclusion, our results do not support a causal association between cannabis use and POAG.


Cannabis , Glaucoma, Open-Angle , Marijuana Abuse , Humans , Genome-Wide Association Study , Cannabis/adverse effects , Cannabis/genetics , Mendelian Randomization Analysis/methods , Glaucoma, Open-Angle/chemically induced , Glaucoma, Open-Angle/epidemiology , Glaucoma, Open-Angle/genetics , Polymorphism, Single Nucleotide
19.
Am J Bot ; 110(12): e16257, 2023 Dec.
Article En | MEDLINE | ID: mdl-38014995

PREMISE: The ornamental Asian palm Trachycarpus fortunei (Arecaceae: Coryphoideae) is widely planted in temperate regions. In Europe, it has spread outside of gardens, particularly on the southern side of the Alps. Sexual expression in the species is complex, varying from dioecy to polygamy. This study investigated (1) sexual floral development and (2) genetic markers implicated in sex determinism. METHODS: The morphology and anatomy of floral organs at different developmental stages were studied using SEM observations and anatomical section. Sex determinism was explored using a genome-wide association study approach, searching for correlations between 31,000 single-nucleotide polymorphisms and sex affiliation of 122 palms from 21 wild populations. RESULTS: We observed that sexual differentiation appears late in floral development of T. fortunei. Morpho-anatomical characters of flowers conducive to panmixia were observed, such as well-differentiated septal nectaries that are thought to promote cross-pollination. At the molecular level, homozygous and heterozygous allelic systems with closely linked regions were found for sex determinism in individuals with female and "dominant-male" phenotypes, respectively. Through our wide sampling in the southern Alps, the closely linked genetic regions in males suggest that at least fifteen percent of wild palms are the direct offspring of "males" that can also produce fertile pistillate flowers. CONCLUSIONS: Trachycarpus fortunei is a further example of unstable sexual expression found in the family Arecaceae and represents an evolutionary path towards an XY genetic system. Our structural and genetic results may explain the high species dispersal ability in the southern Alps.


Arecaceae , Cannabis , Humans , Male , Female , Cannabis/genetics , Genome-Wide Association Study , Arecaceae/genetics , Arecaceae/anatomy & histology , Plants/genetics , Flowers/anatomy & histology
20.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article En | MEDLINE | ID: mdl-37834075

Differential gene expression profiles of various cannabis calli including non-embryogenic and embryogenic (i.e., rooty and embryonic callus) were examined in this study to enhance our understanding of callus development in cannabis and facilitate the development of improved strategies for plant regeneration and biotechnological applications in this economically valuable crop. A total of 6118 genes displayed significant differential expression, with 1850 genes downregulated and 1873 genes upregulated in embryogenic callus compared to non-embryogenic callus. Notably, 196 phytohormone-related genes exhibited distinctly different expression patterns in the calli types, highlighting the crucial role of plant growth regulator (PGRs) signaling in callus development. Furthermore, 42 classes of transcription factors demonstrated differential expressions among the callus types, suggesting their involvement in the regulation of callus development. The evaluation of epigenetic-related genes revealed the differential expression of 247 genes in all callus types. Notably, histone deacetylases, chromatin remodeling factors, and EMBRYONIC FLOWER 2 emerged as key epigenetic-related genes, displaying upregulation in embryogenic calli compared to non-embryogenic calli. Their upregulation correlated with the repression of embryogenesis-related genes, including LEC2, AGL15, and BBM, presumably inhibiting the transition from embryogenic callus to somatic embryogenesis. These findings underscore the significance of epigenetic regulation in determining the developmental fate of cannabis callus. Generally, our results provide comprehensive insights into gene expression dynamics and molecular mechanisms underlying the development of diverse cannabis calli. The observed repression of auxin-dependent pathway-related genes may contribute to the recalcitrant nature of cannabis, shedding light on the challenges associated with efficient cannabis tissue culture and regeneration protocols.


Cannabis , Hallucinogens , Transcriptome , Cannabis/genetics , Epigenesis, Genetic , Gene Expression Profiling , Plant Growth Regulators , Embryonic Development , Gene Expression Regulation, Plant
...